
Big Data Center -
Data Management
Initiative

Quincey Koziol
BDC Summit
July 18, 2018

Data Management Technologies

• Scientific Data Analytics Software Stack
• Deep Learning on HPC IO Platforms

Python
Runtime

Lustre
POSIX

NetCDF HDF5 MPI-IO

TensorFlow
Python Modules Python Libraries

(e.g. PyTables)TensorFlow Native Modules

Data Management Challenges

• Achieving IO Performance is hard
• Tuning I/O is complex

•Even along “the happy path”
•Multi-layered stack
•Scores of tunable parameters

• What is not measured cannot be improved!
•Determine baseline for every layer
•Measure overhead for each component
• Iterate: diff against baseline � tune � measure

Application

HDF5

HPC I/O

Lustre

POSIX

MPI-IO

Data Management Challenges

• “Big Data” adds new and different complexity
•More moving parts and layers

•More permutations to analyze
•Middleware/Runtime/Library implementation issues

•Big Data >>> O (GB)
•KNL Nodes on Cori:

• 96 GB DDR4
• 16 GB MCDRAM

•Scientific Datasets Typically:
• Very Large: O (TB, PB)
• Very Complex: Hundreds of channels, Extreme Resolution

Factors Affecting I/O Performance

•Workload Type (I/O, Network, Memory, Compute)
• Is I/O even the bottleneck?

•What proportion of application runtime spent doing I/O?
•Use case may be compute/memory bound

•Extract and run I/O kernel (i.e. “null” computation)
•Compare against known baselines:

•Realistic Peak Throughput on Cori
• 3 GB/s per Lustre OST (Theoretical)
• ~1 GB/s per Haswell Core

Factors Affecting I/O Performance

• File System (Physical Layout)
•Parallelism: Serial vs Parallel
•Concurrency: Exclusive vs Shared

•How many Lustre clients per OST?
•How many threads (or cores) per client? (KNL requires more)

•Striping Layout: width, count, alignment
•Data Format (Logical Layout)

• Text vs Binary, Raw vs Compressed
•Row-major vs Column-Major order, Chunked

Factors Affecting I/O Performance

•Access Pattern: Sequential vs Strided vs Random
•Does access pattern match file layout?

•Reading columns from data stored row-wise
•Misalignment of data transfers with stripe boundaries

•Use I/O profiling tools to examine pattern
•e.g. Darshan; but only works with MPI

HDF5 in TensorFlow

•Requirements
• Feed data from HDF5 files to TensorFlow

•And possibly other data analytics frameworks in the future
•Needs to be fast and multi-threaded.
•Buffer data for efficient shuffling
•Allow overlapping I/O with computation
• Flexible / Tunable with respect to

•Number of files
•HDF5 datatypes and array shapes

HDF5 in TensorFlow

• Implementations
•Python-based File Iterator (Naïve)

•Easy to implement and change; Customized for specific dataset
•Not multi-threaded and cannot be used for shared files.

• File Queue Runner (Deprecated)
•Threaded I/O when working with multiple files; data prefetching
•Tedious to implement, deadlock prone

•Dataset API (Recommended)
•Threaded I/O when working with multiple files; data prefetching
•Must be implemented for every File System

HDF5 in TensorFlow

• Preliminary Results
• Read 80 GiB from 4 HDF5 files stored on Lustre

0

200

400

600

800

1000

1200

Naive (1 thread; buffered) Queue (1 thread; unbuffered) Dataset (1 thread;
unbuffered)

Haswell
KNL

M
B/

s

Possible Next Steps

•Benchmarking & Analysis
•Will need more real science applications to tune
•Develop synthetic benchmarks from IO Kernels

•Extending existing libraries for IO scaling
•Parallel I/O support for TensorFlow

•FileSystem Interface?
•MPI-IO over Lustre?

•Multi-threading support for HDF5
•Non-MPI Scaling & Parallel I/O

•Scale TensorFlow using novel exascale technologies?

Possible Next Steps

•Explore I/O strategies for scaling Deep Learning
•Hyperparameter Optimization

•Single data stream, no partitioning, multiple models
• I/O Strategy: Embarrassingly Parallel, Shuffle (e.g. MPI_Allgatherv)

•Data Parallelism
•Multiple data streams, vertical partitioning, replicated model
• I/O Strategy: Embarrassingly parallel, Stripe aligned

•Model Parallelism
•Multiple data streams, horizontal partitioning, distributed model
• I/O Strategy: Read Coalescing, Chunking

Summer Project – Fahim Chowdhury

•Evaluate Applications
• Instrument Applications and Frameworks
• Find I/O Bottlenecks
•Determine Solutions and Implement Them

Outline
- 24 -

Ø HEP Benchmark

Ø Time Breakdown and Bandwidth

Ø Climate Data Benchmark

Ø Data Format

Ø Time Breakdown and Bandwidth

Ø Future Exploration Scopes

Outline
- 25 -

Ø HEP Benchmark

Ø Time Breakdown and Bandwidth

Ø Climate Data Benchmark

Ø Data Format

Ø Time Breakdown and Bandwidth

Ø Future Exploration Scopes

64 Nodes
- 26 -

128 Nodes
- 27 -

256 Nodes
- 28 -

512 Nodes
- 29 -

1024 Nodes
- 30 -

Total Time Scale Out
- 31 -

Read Time Scale Out
- 32 -

Read Bandwidth Scale Out
- 33 -

Outline
- 34 -

Ø HEP Benchmark

Ø Time Breakdown and Bandwidth

Ø Climate Data Benchmark

Ø Data Format

Ø Time Breakdown and Bandwidth

Ø Future Exploration Scopes

Outline
- 46 -

Ø HEP Benchmark

Ø Time Breakdown and Bandwidth

Ø Climate Data Benchmark

Ø Data Format

Ø Time Breakdown and Bandwidth

Ø Future Exploration Scopes

64 Nodes
- 47 -

128 Nodes
- 48 -

256 Nodes
- 49 -

512 Nodes
- 50 -

Total Time Scale Out
- 51 -

Read Time Scale Out
- 52 -

Read Bandwidth Scale Out
- 53 -

Outline
- 54 -

Ø HEP Benchmark

Ø Time Breakdown and Bandwidth

Ø Climate Data Benchmark

Ø Data Format

Ø Time Breakdown and Bandwidth

Ø Future Exploration Scopes

Next Exploration Scopes

ØAdded Flag to Ignore Training

ØCan Try to Run the Tests with Training Disabled

ØAdded Provision to Test Checkpointing by TimeLogger

ØCan Try to Run the Tests with this feature

ØHave to Perform Deeper Analysis on the Bandwidth for Parallel IO in
Climate Data Benchmark

ØTo Have a Look into the PyTorch Benchmark

ØTo Try Running the Climate Data Tests Using Burst Buffer

55

